Effect of Additive Noise for Multi-Layered Perceptron with AutoEncoders
نویسندگان
چکیده
منابع مشابه
Capacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملRobust contracting with additive noise
We investigate the idea that linear contracts are reliable because they give the same incentives for effort at every point along the contract. We ask whether this reliability leads to a microfoundation for linear contracts, when the principal is profit-maximizing. We consider a principal-agent model with risk neutrality and limited liability, in which the agent observes the realization of a mea...
متن کاملMulti-Layer Perceptron with Impulse Glial Network
We have proposed the glial network which was inspired from the feature of brain. In the glial network, glias generate independent oscillations and these oscillations propagated neurons and other glias. We confirmed that the glial network improved the learning performance of the Multi-Layer Perceptron (MLP) In this article, we investigate the MLP with the impulse glial network. The glias have on...
متن کاملMulti-Layer Perceptron with Pulse Glial Chain
Abstract—A glia is a nervous cell in the brain. Currently, the glia is known as a important cell for the human’s cerebration. Because the glia transmits signals to neurons and other glias. We notice features of the glia and consider to apply it for an artificial neural network. In this paper, we propose a Multi-layer perceptron (MLP) with pulse glial chain. The pulse glial chain is inspired fro...
متن کاملAttribute Suppression with Multi-Layer Perceptron
In this paper, we introduce a method that allows to evaluate efficiently the “importance” of each coordinate of the input vector of a neural network. This measurement can be used to obtain informations about the studied data. It can also be used to suppress irrelevant inputs in order to speed up the classification process conducted by the network.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2017
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2016edp7468